Custom Class: post-landing-hero

Introduction by Marianne Love, Fourth-Grade Teacher

Fourth grade at Rowland Hall is all about Utah. As we studied both brine shrimp and the legislative process this year, we thought, What better time than distance learning to combine the two?!

After learning how bills become laws, students took it upon themselves to petition our state government to make the brine shrimp the official crustacean of Utah. Who would ever think a landlocked state could possibly have a state crustacean? Students used their persuasive-writing skills to craft letters to our governor and state legislators. Below, Dean Filippone’s letter is one shining example of what a dedicated Rowland Hall fourth grader can create.


May 6, 2020

Dear Governor Herbert, State Representatives, and State Senators:

I am a student at Rowland Hall in fourth grade and I am writing to you because I love the state of Utah. I only have one suggestion to make Utah even better: we can become the only landlocked state in the United States of America that has a state crustacean. The crustacean l nominate is the brine shrimp.

Brine shrimp are like people of Utah in that we are both persistent and don’t give up.

Dean with his letter to state lawmakers.

   Dean with his letter to state lawmakers.

There are many cool facts about brine shrimp that remind me about Utah and the great people in it. For example, did you know that a brine shrimp is barely the size of a pencil eraser, yet because there are so many in the Great Salt Lake, their combined weight is more than 13,000 elephants? It reminds me of Utah because we are all very small in the face of the world, but when we work together we can do even the hardest things.

Another reason that brine shrimp should be the Utah state crustacean is because they’ve been around for over 600,000 years! Brine shrimp are part of this great state’s history, and should be acknowledged as a state crustacean!

Brine shrimp are like people of Utah in that we are both persistent and don’t give up. In fact, brine shrimp can survive at 221 Fahrenheit for two hours and still live. The cysts can even survive for 25 years without food! Utahns have survived a lot of persecution; not to mention challenges with the weather and having to form communities in the high mountains and mountain deserts. Brine shrimp and the people of Utah are tough!

Brine shrimp are very rare. Do you know that only Utah and California have brine shrimp in the United States?

It would be an honor to be the first landlocked state to have a state crustacean! Currently, there are only six states that have a state crustacean. They are: Oregon, Maryland, Texas, Maine, Alabama, and Louisiana. All of these six states are on the water. Unlike these states, Utah is landlocked so we would be unique as the first landlocked state to ever have a state crustacean. 

The final reason l hope you will consider is that brine shrimp are very rare. Do you know that only Utah and California have brine shrimp in the United States? It would be special to have them as our crustacean. These are dark days with COVID-19 so we should celebrate all nature and other things to make us feel better.

Thank you for your consideration, and l hope to hear from you soon.

Sincerely,
Dean


Top image: Teacher Marianne Love wades in the Great Salt Lake during a fourth-grade field trip to Antelope Island in May 2018.

student voices

Crustacean Legislation: Fourth Graders Petition Utah to Make Brine Shrimp a State Symbol

Introduction by Marianne Love, Fourth-Grade Teacher

Fourth grade at Rowland Hall is all about Utah. As we studied both brine shrimp and the legislative process this year, we thought, What better time than distance learning to combine the two?!

After learning how bills become laws, students took it upon themselves to petition our state government to make the brine shrimp the official crustacean of Utah. Who would ever think a landlocked state could possibly have a state crustacean? Students used their persuasive-writing skills to craft letters to our governor and state legislators. Below, Dean Filippone’s letter is one shining example of what a dedicated Rowland Hall fourth grader can create.


May 6, 2020

Dear Governor Herbert, State Representatives, and State Senators:

I am a student at Rowland Hall in fourth grade and I am writing to you because I love the state of Utah. I only have one suggestion to make Utah even better: we can become the only landlocked state in the United States of America that has a state crustacean. The crustacean l nominate is the brine shrimp.

Brine shrimp are like people of Utah in that we are both persistent and don’t give up.

Dean with his letter to state lawmakers.

   Dean with his letter to state lawmakers.

There are many cool facts about brine shrimp that remind me about Utah and the great people in it. For example, did you know that a brine shrimp is barely the size of a pencil eraser, yet because there are so many in the Great Salt Lake, their combined weight is more than 13,000 elephants? It reminds me of Utah because we are all very small in the face of the world, but when we work together we can do even the hardest things.

Another reason that brine shrimp should be the Utah state crustacean is because they’ve been around for over 600,000 years! Brine shrimp are part of this great state’s history, and should be acknowledged as a state crustacean!

Brine shrimp are like people of Utah in that we are both persistent and don’t give up. In fact, brine shrimp can survive at 221 Fahrenheit for two hours and still live. The cysts can even survive for 25 years without food! Utahns have survived a lot of persecution; not to mention challenges with the weather and having to form communities in the high mountains and mountain deserts. Brine shrimp and the people of Utah are tough!

Brine shrimp are very rare. Do you know that only Utah and California have brine shrimp in the United States?

It would be an honor to be the first landlocked state to have a state crustacean! Currently, there are only six states that have a state crustacean. They are: Oregon, Maryland, Texas, Maine, Alabama, and Louisiana. All of these six states are on the water. Unlike these states, Utah is landlocked so we would be unique as the first landlocked state to ever have a state crustacean. 

The final reason l hope you will consider is that brine shrimp are very rare. Do you know that only Utah and California have brine shrimp in the United States? It would be special to have them as our crustacean. These are dark days with COVID-19 so we should celebrate all nature and other things to make us feel better.

Thank you for your consideration, and l hope to hear from you soon.

Sincerely,
Dean


Top image: Teacher Marianne Love wades in the Great Salt Lake during a fourth-grade field trip to Antelope Island in May 2018.

student voices

Explore More STEM Stories

Rowland Hall biology teacher Rob Wilson watches his tank of jellyfish.

Teachers have many strategies to help build students’ excitement around science. If you ask Rowland Hall biology teacher Rob Wilson for one of his, he’ll say to give them access to living organisms.

“Over the years, I've become more and more focused on providing students access to the living organism,” he said. “I want my students to have a really sensory perception and experience of living things.”

Over the years, I've become more and more focused on providing students access to the living organism. I want my students to have a really sensory perception and experience of living things.—Rob Wilson, biology teacher

To do this, Rob is always on the lookout for organisms that can help simplify or solidify the concepts he teaches to upper schoolers. In a state like Utah, his students have access to a range of these resources, and Rob’s led them in conducting experiments on everything from birds to flower bulbs. But, Rob said, the state does have limitations.

“We don't have access to the ocean,” he said.

So Rob found a way to bring the ocean to Rowland Hall: in early February, he introduced three jellyfish, known as moon jellies, to his climate science and ninth-grade biology students. These small organisms—only about an inch in diameter across their upper bells—live in a two-gallon tank on Rob’s desk, where they’re serving as a powerful learning resource.

“My objective was to have a dynamic system that we could take care of, study, and use as a model for how larger systems work,” said Rob.

And for such a simple organism, the jellyfish are able to connect to loads of concepts around the life sciences. Since their arrival, Rob has led discussions around their tank environment, which lends itself well to topics like ocean currents and climate systems, and the jellyfish themselves, whose simple anatomy is easy for students to study. For example, said Rob, when the jellyfish arrived, his biology class was studying the respiratory system—how the body obtains oxygen and releases carbon dioxide—and the jellyfish provided an additional way for them to observe how other living creatures’ bodies process these gasses. They watched, amazed, as the jellies contracted their bodies to take in oxygen-rich water and then stretched to release carbon dioxide, causing a pulse that moves gases, nutrients, and waste through its tissues.

The tank’s neon lights help observers see details of the jellyfish anatomy. The mushroom-like bell is made of two tissue layers, between which are horseshoe-shaped gonads—the only part of the jellyfish that's not transparent—that produce egg cells in females and sperm cells in males. Adjacent to the gonads are the stomachs, which can be seen filled with brine shrimp larvae after a feeding. Radiating from the edges of the bell are tentacles, used to trap the food that the oral arms, which extend from the bottom of the bell, shuttle to the mouth at the bottom of the bell. A nervous system network can also be seen within the bell, which connects to poppy-seed-like eyes at the bell’s edges. “Symmetry, nerve networks, and multiple tissue layers are elements of jellyfish anatomy that provide evidence of shared common ancestry between jellyfish and other animals, including human beings,” said Rob.

In Rob’s climate science class, older students further benefit by helping to care for the jellyfish. “I wanted something that required us to monitor and maintain conditions within the system,” said Rob. “I've made sure that each class takes responsibility for it because it's way more valuable to them if they're participating.”

Students assist Rob with feeding the jellyfish brine shrimp larvae (hatched in a maze-like bowl referred to as the brine shrimp nursery) and monitoring water temperature and pH levels, which change as the jellyfish digest the shrimp larvae and produce ammonia, a toxin that builds up quickly in a two-gallon tank. “We want to make sure it's within a suitable range of pH and the metabolic products of the jellyfish,” said Rob.

Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom.—Katie Moore, class of 2021

At least once a week, students use a water-testing kit to examine ammonia levels, then condition the tank with a mixture of bacteria—one type consumes the ammonia and produces nitrite, a less toxic compound that a second bacteria then consumes, producing even a less toxic waste in the water called nitrates. Students help track these levels on a shared spreadsheet, an activity that’s helping them think about how variations in the environment can have far-reaching repercussions.

“Temperature, pH, nitrogen compounds—they fluctuate,” explained Rob. “Depending on what you add or take out, it'll push it in one direction or another. I use that as an analogy to better understand that the earth system works in similar ways. It builds the students’ ability to understand the flow of material through a system, and then how the balance of material in any one place affects how the system behaves.”

It’s clear when talking to students that these concepts are sticking. Senior Katie Moore, a climate science student, noted, “Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom. Now think about our ocean. How many days have we ignored the changes we've observed but not documented? How many days have our actions impacted the lives of ocean inhabitants with, or without, our noticing?”

It’s a significant way to think about the interconnectedness of all living organisms that share the planet, and a lovely reminder that those connections we share can bind us closer. Rob noted people only need a moment of observation before they start to feel a fondness for the jellies, and that many of his colleagues, as well as students who are no longer in his classes, like to stop by to enjoy them. “As soon as anyone comes in, I'll just sit back quietly and let them watch for a while,” he said with a smile.

Close-up of Rob Wilson's moon jellies, which he uses in his climate science and biology classes.

The jellyfish have charmed Rob Wilson’s students, who have even named them. In senior Katie Moore’s climate science class, the largest jellyfish (who, Katie said, has only three stomachs instead of the usual four) is known as Big Bertha, the medium-sized jellyfish is Gerald, and the smallest jellyfish is Bob.​​​​

It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look.—Rob Wilson

“We are very concerned about their well-being. We absolutely love them like children and love to talk about their endeavors,” added Katie, who noted that the students, after many weeks of observation, can tell the difference between the jellyfish, have named them, and worry about their survival. “We have a full-fledged conspiracy theory about how they keep dying and Mr. Wilson keeps replacing them hoping we will not notice.”

Luckily, moon jellies can live up to three years if well cared for, and Rob and students are committed to making sure that’s the case at Rowland Hall. Rob even comes in on weekends and breaks to keep them alive, and he has designated a space in his home for them to live in during summer break, as he’s planning on bringing them back to school in the fall to continue to enhance lessons—and to inspire the kind of wonder that access to living creatures offers.

“It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look,” he said. “There's so much to learn from watching the simple organism.”

STEM

A Rowland Hall middle schooler in class

In mathematics, students learn the definition of an equation: a statement that shows the values of two mathematical expressions are equal (for example, x – 5 = 10).

But math teachers, including Garrett Stern, who teaches in the Middle School, want students to understand that an equation isn’t just numbers and letters on a page. “An equation,” said Garrett, “relates to an image on the graph.”

For many of our math students, this piece of algebra art represents their pinnacle achievement in middle school math.—Garrett Stern, math teacher

These images can take a variety of forms—such as lines, parabolas, and circles—which, when placed together on a graph, can do something exciting: they can create art.

To help illustrate the visual beauty in mathematical equations, Garrett has for the past six years assigned his students the task of creating their own algebra art using the Desmos graphing calculator, a free resource used by educators around the world. Every year, he’s found that Rowland Hall students are able to produce inventive, and often very impressive, works of art.

“For many of our math students, this piece of algebra art represents their pinnacle achievement in middle school math,” said Garrett.

At an April 15 student assembly, Garrett highlighted algebra art as well as recognized the accomplishments of this year’s crop of artists. He was joined by three students, Rebecca M., Jojo P., and Erika P., who created some of the most outstanding pieces in this year’s unit. Below, these students share their algebra art experiences with the Rowland Hall community.

“Star Destroyer” by Rebecca M.

Desmos algebra art by Rowland Hall eighth grader Rebecca M.

Click image to view on Desmos.

Rebecca’s drawing of a Star Destroyer is one of this year’s most complicated pieces. In fact, the Star Wars fan’s subject was so detailed that Garrett said he initially attempted to talk her out of it.

“I tried to dissuade Rebecca from trying her idea,” he remembered, “but she rejected my advice.”

Rebecca—who was inspired to tackle the Star Destroyer after viewing an algebra art drawing of an AT-AT, or All-Terrain Armored Transport, that now-junior Dillon Fang created when he took Garrett’s class—admitted that, although she was able to complete her chosen subject in the end, the process of creating the Star Destroyer was very challenging.

“I was quite confident going into this project, but my confidence began to dwindle after doing some equations,” she said. Rebecca especially remembers the difficulty of creating the ship’s bridge. “It has many small pieces that you don’t think about until you have to trace it with algebra equations.”

Rebecca said the time-consuming three to four weeks it took to complete her project required a lot of patience and resilience—but that it was worth it because it taught her she can do difficult things.

“I am super proud of it. I would gladly do it again,” said Rebecca. “I managed to push through and made a really cool design.”

“Simplicity” by Jojo P.

Desmos algebra art by Rowland Hall eighth grader Jojo P.

Click image to view on Desmos.

Jojo loves line drawings, especially of people, and discovered that she could successfully recreate the curves of a traditional ink-and-paper line drawing in the online Desmos format—an accomplishment that caught her math teacher’s attention.

“What impresses me most about Jojo's piece is the stylish curvature,” Garrett said.

But creating her project wasn’t easy. Jojo remembers feeling far behind her classmates in the early days of the assignment.

“I didn't really know how to make the equations,” she said. “In the beginning, all I had was about five lines, when everybody else had way more done. I was scared I would be behind.” Instead of panicking, however, she persisted, figuring out the equations she needed and building on her skills as she moved from long lines and wide curves to nail and flower details, which she said were definitely the hardest part of the drawing.

“When it was finished, I felt proud,” Jojo remembered. “I felt awestruck because I didn't think I could do anything like this.” It’s clear that the experience built her confidence in a way that will continue to benefit her.

“The project was challenging, but it showed me, as a mathematician, what I actually was capable of,” Jojo said.

"Ornate Owl" by Erika P.

Desmos algebra art by Rowland Hall eighth grader Erika P.

Click image to view on Desmos.

Garrett chose to highlight Erika's piece at the assembly because she managed to include texture—although she said that hadn’t been her original plan.

“I wanted to create an owl because owls are my favorite animal, but I hadn’t planned on making it so detailed,” Erika explained.

After experimenting with equations for the owl’s body, beak, talons, and eyes, Erika said she felt like she needed to add more to her drawing and started on what turned out to be its most complicated component: feathers.

“I had to try out multiple numbers in order to get the feathers—which were created out of parabolas—to be thin and long enough to look good if I consistently spread them throughout the wings,” she said. The feathers alone took Erika over two hours to complete, and are just one example of the experimentation she had to do to create a piece that she was proud to turn in.

“The hardest part was getting shapes and lines to line up and intersect, as well as experimenting with equations to get shapes that looked at least somewhat realistic,” she remembered. “I just had to jump into it.”

Now, Erika said, she can’t imagine her drawing without those detailed additions, and she’s proud she challenged herself.

“I was glad I decided to add detail because I was thinking about submitting the work before then, but it just didn’t feel like a finished piece,” she said. “After finishing, I felt quite accomplished!"


Altogether, this year’s eighth-grade class created 75 pieces of algebra art. Below are some examples of their work (click each square to see the artwork larger on Desmos).

“Our students deservedly feel proud of their achievements,” said Garrett. “They ambitiously attempted challenging images, embraced sophisticated equations, attended to detail, and, above all, persevered.”

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

STEM

Rowland Hall's robotics team.

Rowland Hall’s young women in computer science have continued their outstanding track record of earning accolades from the National Center for Women and Information Technology’s (NCWIT) Aspirations in Computing (AiC) annual awards program.

This year, six Winged Lions earned awards from our regional Northern Utah NCWIT Affiliate: senior Maddy Eatchel and junior Irenka Saffarian secured wins; sophomore Ane Hernandez and freshman Sophie Zheng earned honorable mentions; and junior Tianyi Su and freshman Claire Wang were named rising stars.

Our students’ AiC success is due in part to the efforts of computer science (CS) teacher Ben Smith ’89, himself a past winner of two educator honors at the affiliate level. Ben always encourages promising CS students to apply for the awards; this year, he’s glad that many still did, despite the challenges of the pandemic. “It’s really a testament to the school's dedication to make computer science, robotics, and technology an accessible and exciting option for all students,” the teacher said.

Senior Maddy Eatchel, an affiliate AiC winner, is now captain of our robotics team after helping to start the team last year. She wants to study CS in college, and is working on a research project applying machine learning to data in order to find new compounds for batteries.

This year’s recognized group from Rowland Hall skews younger than usual, and that bodes well for our CS program’s future, Ben said: students who receive higher levels of recognition typically apply for the awards two or more years in a row. For lone senior Maddy, a 2020 honorable mention recipient, this year’s win is a natural progression: she’s now captain of Rowland Hall’s robotics team after helping to start the team last year. She wants to study CS in college, and is currently working on a research project applying machine learning to data in order to find new compounds for batteries.

"Maddy took my intro to Java course on a whim as a sophomore, with very little interest other than the need to fill a class period," Ben said. "She has gone on to take my AP Java class, and to be an integral member of the new school robotics team, leading the team in a very challenging year."

Rowland Hall students will attend the regional affiliate’s virtual award ceremony on March 20. In addition to recognizing awardees, the ceremony will include a panel of college students and networking opportunities with women in the tech industry.

Ben started encouraging his students to enter the AiC awards back in 2014. Since then, 19 Winged Lions have earned a collective 25 awards, including one win and two honorable mentions at the national level. Under Ben’s leadership, Rowland Hall has been committed to ensuring all students—especially young women, who are underrepresented in computing careers—feel welcomed and supported in CS.

stem


Top image: The Rowland Hall robotics team at the Freedom Prep Academy FIRST Tech Challenge state qualifier in Provo, Utah, on March 13. From left to right: senior Yuchen Yang, sophomore Jordyn VanOrman, freshman Gabe Andrus, freshman Adam Saidykhan, senior captain and regional AiC winner Maddy Eatchel, senior Daniel Carlebach, and freshman Joey Lieskovan (cut off on the right edge).

Anna Shott receiving her high school diploma at graduation.

Alum Anna Shott ’16 sent the following email to middle and upper school computer science (CS) teacher Ben Smith ’89 on December 3, 2020. Anna graciously agreed to let us republish it here. We last interviewed Anna in 2016 when she was a senior taking her first CS class with Ben and enjoying the collaborative, problem-solving aspects of the field, which often gets falsely stereotyped as an antisocial and rote career choice. Ben has worked hard over nearly a decade to show his students—especially young women, who are underrepresented in the field—the reality: that programmers typically work together in teams to solve real-world problems and ultimately help people. This year, Ben is even weaving in social justice as a theme, using the Algorithmic Justice League as one of his teaching resources. We're grateful for Ben's dedication to CS education and can't wait to see what he and his former students like Anna do in the future. If you're an alum with a story about how a Rowland Hall teacher helped to inspire your career choice, let us know.


Dear Mr. Smith,

Hope you are doing well and enjoying a nice holiday season! I am reaching out with an update and to say thank you. 

After graduating from Rowland Hall in 2016 I took a gap year where I worked at my family's company and traveled. In 2017 I enrolled as a freshman at the University of Southern California studying computer science and business. The last two summers I interned at Microsoft, first as an Explore intern and then as a program management intern. I am now a senior finishing up my last few classes before graduation in May. Next fall I’m heading to Seattle to join Microsoft full-time as a program manager.

I would not have even thought to try out programming, let alone make computer science my undergraduate major and career priority, if it weren’t for the very first computer programming class you taught at Rowland Hall during my 2015–16 senior year.

I’ve spent much of my last four years participating in startup incubators, building companies, and exploring Los Angeles. I've stayed involved in the engineering community as a counselor for an on-campus computer science camp for K–12 students and as a teacher's assistant for one of USC's core software engineering classes. I would not have even thought to try out programming, let alone make computer science my undergraduate major and career priority, if it weren’t for the very first computer programming class you taught at Rowland Hall during my 2015–16 senior year. Your class truly influenced the path I chose, and I cannot thank you enough for sparking my interest in computer science.

I've had so much fun reading the various articles on the Rowland Hall website regarding the incredible computer science program you have built. Congratulations on the numerous accolades you and your students have earned over the years. I hope the program continues to grow and expose students to computer science and engineering, and ultimately inspire many to pursue a career path in those disciplines. 

I wish you and your family all the best and hope you are staying happy and healthy during this time.

Many thanks again, and happy holidays!

Sincerely,
Anna Shott
Class of 2016


Top: Anna Shott ’16 at her graduation, receiving her diploma from now-retired head of school Alan Sparrow.

Alumni

You Belong at Rowland Hall