Custom Class: post-landing-hero

After several years of success in the National Center for Women and Information Technology’s (NCWIT) Aspirations in Computing (AiC) awards program, 2020 marks Rowland Hall’s winningest year yet—the capstone of which is our first national winner, junior Katy Dark.

Katy is one of 40 high schoolers tapped from a pool of 4,700 applicants to receive the highest AiC honor this year. She and the other winners will receive cash, prizes, and a trip to the Bank of America headquarters in Charlotte, North Carolina, to celebrate and network in early March.

“I’m ecstatic that I’ve gotten the privilege to win the national award,” Katy said, adding the recognition for pursuing her passion has left her stunned. Katy has applied for the AiC awards three times; in 2019, she won an honorable mention from the NCWIT Northern Utah Affiliate.

In addition to Katy’s national win, the NCWIT Northern Utah Affiliate gave senior Ellie Nichols and juniors Maddy Eatchel and Yuchen Yang AiC honorable mentions. Teacher and alum Ben Smith ’89 earned the Educator Award.

In addition to Katy’s distinction, our local affiliate gave senior Ellie Nichols and juniors Maddy Eatchel and Yuchen Yang AiC honorable mentions. And after an honorable mention last year, computer science (CS) teacher and alumnus Ben Smith ’89 secured our affiliate’s Educator Award for his steadfast support of young women in computing.

NCWIT’s Award for AiC honors women, genderqueer, or non-binary high schoolers for their computing-related achievements and interests. Winners are picked for their aptitude and aspirations in tech and CS—as demonstrated by their computing and leadership experience, tenacity in the face of barriers to access, and plans for college.

Not only is Katy committed to pursuing a computing career, she’s already using her knack for the subject to make a difference in her community. She’s been teaching coding to students—primary at-risk Latinx youth—at Salt Lake City’s Dual Immersion Academy since the school lost funding for CS in 2018. Read our story on her President’s Volunteer Service Award. Now, Katy hopes to make her program permanent through a combination of grants and fundraising.

“I’m honored to have Katy as one of my students,” Ben said. “She is deserving of the NCWIT national award because she has taken her interest in and passion for technology, cybersecurity, coding, and computer science and found ways to bring that passion to students who would not ordinarily have the opportunities that she has had. She is selfless and dedicated to making the world a better place.”

Ben started encouraging his students to enter the AiC awards in 2014. Since then, 13 Winged Lions have earned a collective 18 awards, including one win and two honorable mentions at the national level. On top of that, Ben won two educator honors at the affiliate level. Under Ben’s leadership, Rowland Hall has been committed to ensuring all students—especially young women, who are underrepresented in computing careers—feel welcomed and supported in CS. That effort shows in our classes: in January, Rowland Hall earned the College Board's 2019 Advanced Placement (AP) CS Female Diversity Award for achieving high female representation in our AP CS Principles class. Out of 20,000 institutions that offer AP courses, 818 won the award. We're one of only two in Utah.

Update, May 29, 2020: After the initial round of awards, senior Violette Truong also won an AiC National Certificate of Distinction (CoD). From NCWIT: "National CoDs represent approximately 10% of the application pool. These students are selected from all applicants who were not selected for another award designation. CoDs are selected on the basis of score and experience that indicates that they would benefit from being part of the AiC Community. Most CoD recipients have experience and achievements comparable to Affiliate Honorable Mentions but in many cases were not selected due to capacity limits for the Affiliates that cap the number of recipients that can be selected. This Award is designated by NCWIT." Congrats, Violette!


Top photo: from left, Yuchen Yang, Ben Smith, Maddy Eatchel, and Katy Dark at the NCWIT Utah Affiliate Award Luncheon on March 7.

stem

Junior Wins National Award for Young Women in Computing, Teacher and Four Other Students Win Additional Accolades

After several years of success in the National Center for Women and Information Technology’s (NCWIT) Aspirations in Computing (AiC) awards program, 2020 marks Rowland Hall’s winningest year yet—the capstone of which is our first national winner, junior Katy Dark.

Katy is one of 40 high schoolers tapped from a pool of 4,700 applicants to receive the highest AiC honor this year. She and the other winners will receive cash, prizes, and a trip to the Bank of America headquarters in Charlotte, North Carolina, to celebrate and network in early March.

“I’m ecstatic that I’ve gotten the privilege to win the national award,” Katy said, adding the recognition for pursuing her passion has left her stunned. Katy has applied for the AiC awards three times; in 2019, she won an honorable mention from the NCWIT Northern Utah Affiliate.

In addition to Katy’s national win, the NCWIT Northern Utah Affiliate gave senior Ellie Nichols and juniors Maddy Eatchel and Yuchen Yang AiC honorable mentions. Teacher and alum Ben Smith ’89 earned the Educator Award.

In addition to Katy’s distinction, our local affiliate gave senior Ellie Nichols and juniors Maddy Eatchel and Yuchen Yang AiC honorable mentions. And after an honorable mention last year, computer science (CS) teacher and alumnus Ben Smith ’89 secured our affiliate’s Educator Award for his steadfast support of young women in computing.

NCWIT’s Award for AiC honors women, genderqueer, or non-binary high schoolers for their computing-related achievements and interests. Winners are picked for their aptitude and aspirations in tech and CS—as demonstrated by their computing and leadership experience, tenacity in the face of barriers to access, and plans for college.

Not only is Katy committed to pursuing a computing career, she’s already using her knack for the subject to make a difference in her community. She’s been teaching coding to students—primary at-risk Latinx youth—at Salt Lake City’s Dual Immersion Academy since the school lost funding for CS in 2018. Read our story on her President’s Volunteer Service Award. Now, Katy hopes to make her program permanent through a combination of grants and fundraising.

“I’m honored to have Katy as one of my students,” Ben said. “She is deserving of the NCWIT national award because she has taken her interest in and passion for technology, cybersecurity, coding, and computer science and found ways to bring that passion to students who would not ordinarily have the opportunities that she has had. She is selfless and dedicated to making the world a better place.”

Ben started encouraging his students to enter the AiC awards in 2014. Since then, 13 Winged Lions have earned a collective 18 awards, including one win and two honorable mentions at the national level. On top of that, Ben won two educator honors at the affiliate level. Under Ben’s leadership, Rowland Hall has been committed to ensuring all students—especially young women, who are underrepresented in computing careers—feel welcomed and supported in CS. That effort shows in our classes: in January, Rowland Hall earned the College Board's 2019 Advanced Placement (AP) CS Female Diversity Award for achieving high female representation in our AP CS Principles class. Out of 20,000 institutions that offer AP courses, 818 won the award. We're one of only two in Utah.

Update, May 29, 2020: After the initial round of awards, senior Violette Truong also won an AiC National Certificate of Distinction (CoD). From NCWIT: "National CoDs represent approximately 10% of the application pool. These students are selected from all applicants who were not selected for another award designation. CoDs are selected on the basis of score and experience that indicates that they would benefit from being part of the AiC Community. Most CoD recipients have experience and achievements comparable to Affiliate Honorable Mentions but in many cases were not selected due to capacity limits for the Affiliates that cap the number of recipients that can be selected. This Award is designated by NCWIT." Congrats, Violette!


Top photo: from left, Yuchen Yang, Ben Smith, Maddy Eatchel, and Katy Dark at the NCWIT Utah Affiliate Award Luncheon on March 7.

stem

Explore More STEM Stories

Rowland Hall Upper School students in disguise for the Drag Vs. AI workshop.

Editor's note: This piece is republished from Rowland Hall's 2020–2021 Annual Report.


Computer science impacts our daily lives, but its workforce falls woefully short when it comes to reflecting national racial, ethnic, and gender demographics. Solving that problem starts with K–12 education. The subject’s proponents at Rowland Hall are ensuring equity is programmed into the curriculum—and the curriculum gets the attention it deserves—building toward a computing-literate society where everyone has a seat at the table.

During hybrid learning one February afternoon, about 40 Rowland Hall faculty, staff, and upper schoolers—some working from home, others from the Lincoln Street Campus—gradually populated a Zoom room. It started off as a standard pandemic-era Upper School class, but 20 minutes later, it looked more like an avant-garde digital dress rehearsal. Students unearthed accessories from family members’ closets and Halloween costumes past: a cowboy hat, a pair of aviation goggles, a leopard-print scarf. They cloaked themselves in masks, feather boas, heavy makeup, and oversized sunglasses.

Director of Arts Sofia Gorder and her dance students comprised half of these creative camouflagers, but despite appearances, it wasn’t prep for one of their performances. It was an open workshop held by teacher Ben Smith ’89 and his Advanced Placement Computer Science (CS) Principles class to show the Upper School community how facial-recognition technologies work and how they can be harmful, particularly for underrepresented groups.

One dance student, Mena Zendejas-Portugal ’21, wore a pink wig with bangs that covered her eyes. She used makeup to draw decoy eyes on her cheeks, below the magenta fringe. Mena and her peers smirked at their laptop cameras as a web-based program used artificial intelligence (AI) to guess their ages and genders. 

Rowland Hall computer science teacher Ben Smith participating in the Upper School's Drag Vs. AI facial-recognition workshop.

Computer science teacher Ben Smith '89 aged himself for the Drag Vs. AI workshop.


Before Mena wore her disguise, the program vacillated between misidentifying her as a 13-year-old boy and a 12-year-old girl. After Mena changed her appearance, ironically, the program’s guess came closer to the reality: it classified her as a 16-year-old female. 

“It wasn’t a surprise how the AI read me since I have a rounder face along with short hair,” said Mena, one of the leaders of the student Justice, Equity, Diversity, and Inclusion (JEDI) Committee. “It’s just a confirmation for the thought of AI being built around stereotypes and constructed beauty standards that aren’t applicable to everyone.”

Algorithms permeate our daily lives, and flawed coding can have devastating real-world consequences, from wrongful arrests to housing discrimination. Ben educates the Rowland Hall community on these problems, and ensures his CS students are equipped to solve them.

Algorithms permeate our daily lives, and the type of flawed coding that Mena experienced can have devastating real-world consequences, from wrongful arrests to housing discrimination. Ben educates the Rowland Hall community on these problems, and ensures his CS students are equipped to solve them. “If these students are going to become leaders in technology, they need to have this perspective,” Ben said. “You can't ask people to have an interest in a career and not prepare them for the future ramifications of that.” 

Ben has long given students space to discuss JEDI issues but formally added it to his CS curriculum during the 2020–2021 school year. And at Rowland Hall, the marriage of CS and social justice is a natural development: the school prioritized science, technology, engineering, and math (STEM) in the 2014 Strategic Plan, and during the past school year, longtime JEDI work escalated as a priority. 

February’s facial-recognition workshop—Drag Vs. AI by the Algorithmic Justice League, which “combines art and research to illuminate the social implications and harms” of AI—helped a cross section of upper schoolers see firsthand why this work matters: “By just learning CS and not looking behind the scenes, the future could be less inclusive than we envision,” Mena reflected. Indeed, AI researcher Joy Buolamwini, a Black woman, launched the league after personally experiencing algorithmic discrimination in her work. In one project utilizing generic facial-recognition software, the program failed to detect Joy’s face until she wore a white mask. In another, she had to ask a lighter-skinned friend to stand in for her. We can solve these problems, Joy posited in a 2016 TED Talk with over 1.4 million views, by creating more inclusive code. Teams must be diverse and driven to create “a world where technology works for all of us, not just some of us, a world where we value inclusion and center social change.”

This ethos fuels Ben’s work. The Rowland Hall alumnus, now celebrating 20 years as a faculty member at his alma mater, started teaching CS in 2015 and shifted to teaching that subject exclusively two years later. From day one, he’s made it his mission to diversify CS, a field “plagued by stark underrepresentation by gender, race, ethnicity, geography, and family income,” according to CS advocacy nonprofit Code.org. The US needs more—and more diverse—computer scientists, and efforts to broaden that workforce need to start in K–12 schools. Computing jobs are the top source of all new wages in the U.S. and they make up two-thirds of all projected new jobs in STEM fields, Code.org touts, making CS one of the most in-demand college degrees. And exposure before college makes a difference: students who learn CS in high school are six times more likely to major in it. Among traditionally underrepresented groups, the likelihood is even higher: seven times for Black and Latinx students, and 10 times for women.

Ben currently relies on one-to-one recruitment to grow CS enrollment among those underrepresented populations. He read a book around 2014, during graduate school in instructional design and educational technology at the University of Utah, that sparked his professional goals: Stuck in the Shallow End: Education, Race, and Computing by Jane Margolis. The book chronicles the lack of access to CS courses for Black and Latinx students—and addresses how to change the system. “It was just one of those eye-opening moments,” he said. “There’s no logical reason—except institutional bias—for why computer science education looks the way it does today… It’s incredibly unjust.” Since then, Ben has prioritized combating what he calls the most glaring equity issue in education today. He collaborates with other schools and organizations that are trying desperately to expand CS opportunities, and works diligently to build an equitable CS program for Rowland Hall. “With Rowland Hall's support, I’m committed to a future where all computer science courses have a student population that mirrors the demographics of the school as a whole.”

Building Curriculum from the Ground Up

Fortunately, Ben isn’t starting from scratch when sixth graders meet him in Foundations of Computer Science, a required class since 2016. Since Christian Waters stepped into the role of director of technology integration in 2013, he has crafted an arsenal of computing lessons to captivate the full spectrum of beginning and lower schoolers. Christian teaches at least one unit of digital citizenship, coding, and robotics to every lower schooler. Kids engage in hands-on activities like programming colorful toy robots and building wearable tech comprised of LED lights affixed to felt. They also get the space to think big and consider computing’s real-world applications, like furthering one of the United Nations Sustainable Development Goals. How might they use computing, for example, to remedy a problem like overcrowding or a lack of affordable and clean energy?

Director of Technology Integration Christian Waters at Lower School Maker Night 2018, on the Salt Lake McCarthey Campus.

Christian Waters with students at the 2018 Lower School Maker Night.


Christian draws curriculum from dozens of expert educational resources, including the Robotics Institute at Carnegie Mellon University, Children’s Innovation Project, and Code.org. “We've built something that is really relevant, and the best combination of the best materials and resources,” Christian said. “It's not a curriculum that is sold in a big box that you wheel into a classroom, and everyone has to do it the exact same way. It's tailored to the needs of Rowland Hall and relevant to our goals and our objectives.” 

Thanks to ongoing collaboration between Christian and Ben, Rowland Hall’s CS curriculum is also vertically aligned: “We're preparing students for Advanced Placement Computer Science A Java in a way they never were before. Students in the Middle School are learning about objects, classes, functions, and variables,” Christian explained. “It's thanks in part to how we're building up from the Beginning School.”

One example of vertical alignment and mission-centric curriculum: Christian uses a Code.org activity where lower schoolers train a computer to recognize facial expressions—broaching some of the same issues upper schoolers examined in their February workshop. The crux of the Lower School lesson, according to the educator: “How do we distinguish between facial features and whether someone is happy or sad or excited, and is that even ethical to do that?” Students exercise their critical-thinking skills and confront questions involving how these programs work, and how to ensure they’re as ethical and unbiased as possible. “Ultimately what students get is that there is a lot of subjectivity in how we humans train computers,” Christian said. 

A Group Effort

Part of attracting younger and more diverse students to CS—and, down the road, reducing bias in code—entails continual, widespread exposure. Christian has not only integrated CS into classrooms, he’s also created community-wide opportunities to rally around computing and engineering. He organizes three annual events that are now synonymous with STEM culture on the McCarthey Campus: the beginning and lower school Family Maker Night in the fall, the school-wide Hour of Code in the winter, and Lower School Maker Day in the spring. “These events are designed to demystify technology and making,” Christian said. “All students can see themselves as computer scientists, coders, makers, roboticists, engineers.”

These events and the school’s CS curriculum as a whole are dominated by collaborative group work that occasionally reaches across subjects and divisions. Before the COVID-19 pandemic, Ben Smith's Advanced Placement Computer Science Principles students collaborated annually with Tyler Stack's fourth graders to make an app that helps young students learn math. Upper schoolers worked in groups to devise and test app concepts on the lower schoolers and use their feedback to improve app design. For Katy Dark ’21, it was a highlight of Rowland Hall’s CS program: “The thing that will stick with me the most is using new interfaces to help people.” It’s a fitting favorite memory for Katy, who in 2020 became the first Rowland Hall student to win the top national award from the Aspirations in Computing program, sponsored by the National Center for Women & Information Technology (NCWIT). She won, in part, for her efforts tutoring students and developing a coding club at Salt Lake City’s Dual Immersion Academy, a bilingual Spanish-English charter school she attended during her elementary years.

Two Rowland Hall computer science students learning how to program a robot to write on a white board.

Two CS students learning how to program a robot to write on a white board.


The app project is a prime example of group work that can encourage underrepresented populations to pursue CS, according to Dr. Helen Hu, a Westminster College computer science professor whose work examines how educators can improve diversity in CS. “In industry there's something called agile co-programming, which is people working in groups,” said Dr. Hu, also the parent of a Rowland Hall ninth grader and seventh grader. “This is actually an important skill in computing—being able to work with others.” While some students love computing for computing, she added, a lot of others love it because of what it can do, “because of the problems you can solve, because of the impact you can have,” she said. “By doing both, by emphasizing these other parts of computing, you're helping both types of students. The students who love to code, still get to code. The students who love coding to solve problems are getting to do that. We know that students aren't going to learn it as well when you just teach it at the level of, ‘Where does the semicolon go and where do parentheses go?’”

Alex Armknecht ’20, a 2019 Aspirations in Computing regional award winner who’s now a CS major at Loyola Marymount University (LMU), appreciated learning CS at a more holistic level. “I loved the CS classes at Rowland Hall and they were consistently my favorite classes throughout high school,” she said. “I loved the way Mr. Smith taught and allowed us creative freedom...his class is the main reason I am majoring in CS. I learned the importance of asking for help, creativity, and collaboration, which all have been helpful to me in my college CS classes.”

During her senior year, Alex also participated in another shining example of collaborative group work in CS: the Upper School’s For Inspiration and Recognition of Science and Technology (FIRST) Tech Challenge Robotics team. The team started off strong in its inaugural 2019–2020 year and has continued to evolve, Ben said: “It’s expanded the opportunities for young women to become leaders, compete, and see how other girls across the state are involved with technology and engineering.” 

During the 2020–2021 school year, juniors Irenka Saffarian and Tina Su stepped into unofficial leadership roles that bode well for the near future. Both have taken Advanced Placement CS A and are great coders, Ben said, and they pushed hard for the team to make it to the national semifinals in the FIRST Global Innovation Awards. Rowland Hall was the only team from Utah and one of only 60 teams internationally to make it that far. “Our theme right now is take it to the next level,” Ben said. “We realize we are right on the verge of getting to that level where we’re really competitive—where we actually compete with the best teams in the state.” And Irenka and Tina, Ben said, are committed to getting the team there. They embody the enthusiasm that Ben and Christian hope to cultivate across the school. “I hope that the future of taking computer science courses at Rowland Hall is increasingly coming from a place of excitement and interest and, ‘I cannot wait to use this skill in anything that interests me,’” Ben said. “It's not about a kid sitting in a basement all alone typing on their computer. This is about groups of people making exciting and interesting and really impactful decisions, and everyone needs to be at the table.”

Progress Made, and the Work Ahead

We are talking more about it, not just because it's zeitgeisty, but because technology has a lot of ground to make up here. We see ourselves as trying to help kids recognize that.—Christian Waters, director of technology integration

While Katy, Alex, Irenka, and Tina are recent success stories, Christian and Ben readily acknowledge that Rowland Hall isn’t exempt from racial and gender disparities. But the school is perpetually working “to change that from the ground up,” Christian said. Thanks in part to schoolwide training, JEDI values are ingrained in how Rowland Hall instructors design and teach tech-related classes. “We are talking more about it, not just because it's zeitgeisty, but because technology has a lot of ground to make up here. We see ourselves as trying to help kids recognize that.” 

Ané Hernandez, a junior who took AP computer science and robotics as a sophomore during the 2020–2021 year, appreciated the heightened JEDI focus. Ané’s parents are both engineers and she’s been interested in CS for as long as she can remember—the winner of a 2021 Aspirations in Computing regional honorable mention loves the art of programming. Ané, who is Mexican American, has also long been interested in JEDI issues and advocating for more equity and representation, including through Rowland Hall’s student JEDI committee. She found it compelling to see how two of her passions, JEDI and CS, are related. "As technology is rising, racial, gender, and socioeconomic problems still exist," Ané said, "so they're just becoming interwoven." 

While she’s grateful for how the JEDI units have furthered her passion for CS, she hopes her school also uses this momentum to self-reflect on, for instance, how to make CS more accessible to lower-income schools and communities. And that sort of community outreach isn’t unprecedented at Rowland Hall. In summer 2015, and in two summers that followed, Rowland Hall hosted a nonprofit Hackathon centered around teacher training. “That was a way that we contributed to a culture of learning and growth in our community,” Christian said. Educators from local public and independent schools convened on the Lincoln Street Campus to learn coding skills and how to use certain tools, like 3D printers and Arduino robots. The technology team helped cover some of the costs, Christian said, and teachers could earn state licensing credit for attending. Ben's resume is also flooded with conferences and workshops where he’s trained his peers. “It’s great for me to show a group of 15 or 20 educators how to teach a curriculum,” he said, “and then I can show them that I have a classroom with a majority of female students, and that I've been able to recruit and build, and that this is possible.”

Rowland Hall computer science teacher Ben Smith with a middle schooler on the Salt Lake City Lincoln Street Campus.

Ben teaching in the Middle School. Computer science is taught in all four Rowland Hall divisions.


These sorts of efforts could expand in the future. Rowland Hall is seriously considering ways to increase CS opportunities and spaces, and plans could solidify as early as the 2021–2022 school year. Christian and Ben are drafting a CS strategic plan that involves integrating CS with other subjects, training teachers, and expanding current classes. And Christian, Ben, and Director of Curriculum and Instruction Wendell Thomas are starting a CS task force and have asked others to join: one or two teachers from each division, Dr. Hu, and Sunny Washington, a startup COO and CEO who also serves on the board of Equality Utah. One of the task force’s first actions will be to provide feedback on the strategic plan draft.

For now, Christian and Ben’s work to recruit more—and more diverse—CS students is paying off. Since 2014, 19 Winged Lions have earned a collective 25 awards from the Aspirations in Computing program, including one win (Katy’s) and two honorable mentions at the national level. Rowland Hall also won The College Board’s 2019 and 2020 Advanced Placement Computer Science Female Diversity Award for achieving high female representation in our AP CS Principles class. Dr. Hu lauded the achievement. “That's pretty impressive," she said—especially for Utah. "There are some states where they have tens of teachers who received this. We have three. I think that speaks to how difficult this is in the state." 

Ben, Christian, and the faculty and staff who support them remain focused on graduating good citizens armed with the tools to make tech work for all of us, not just some of us.

Ben, Christian, and the faculty and staff who support them remain focused on graduating good citizens armed with the tools to make tech work for all of us, not just some of us, as Joy Buolamwini so wisely said. Recent grad Katy is now attending Trinity College in Dublin, Ireland, and majoring in law—possibly cyber law. Anna Shott ’16 emailed Ben in December 2020 to share that she’d be joining Microsoft as a program manager the following year. “Your class truly influenced the path I chose, and I cannot thank you enough for sparking my interest in computer science,” wrote Anna, a University of Southern California grad who also worked as a K–12 CS camp counselor on her college campus. And current student Ané said what she learned in AP Computer Science Principles—that an algorithm can decide whether someone is granted a loan, for example—was a game-changer for her. “This experience has made me want to not only major in computer science, but a specific realm of computer science that maybe deals with AI and diversifying participants and coders so that there isn't such a large bias.”

Alex also plans on working in CS, another testament to Ben’s teaching: “I decided I wanted to go to my college when I met LMU's chair and professor of computer science and he reminded me of Mr. Smith,” she said. “I would not be a computer science major if it weren't for him. He pushed me to work my hardest, to try new things, and provided me with lots of opportunities.”

This sort of feedback keeps Ben laser-focused on boosting equity in CS at Rowland Hall and beyond. “I won’t pretend that it didn’t bring a tear to my eye,” he said. “It’s certainly fuel for the work that I do and it reminds me that it's worth doing. I could sit back on a curriculum and just deliver, and do fairly well at it. But this is beyond that. The work is more than what I teach—it’s who I’m teaching to.”

Timeline: Modern Computer Science at Rowland Hall

STEM

Rowland Hall biology teacher Rob Wilson watches his tank of jellyfish.

Teachers have many strategies to help build students’ excitement around science. If you ask Rowland Hall biology teacher Rob Wilson for one of his, he’ll say to give them access to living organisms.

“Over the years, I've become more and more focused on providing students access to the living organism,” he said. “I want my students to have a really sensory perception and experience of living things.”

Over the years, I've become more and more focused on providing students access to the living organism. I want my students to have a really sensory perception and experience of living things.—Rob Wilson, biology teacher

To do this, Rob is always on the lookout for organisms that can help simplify or solidify the concepts he teaches to upper schoolers. In a state like Utah, his students have access to a range of these resources, and Rob’s led them in conducting experiments on everything from birds to flower bulbs. But, Rob said, the state does have limitations.

“We don't have access to the ocean,” he said.

So Rob found a way to bring the ocean to Rowland Hall: in early February, he introduced three jellyfish, known as moon jellies, to his climate science and ninth-grade biology students. These small organisms—only about an inch in diameter across their upper bells—live in a two-gallon tank on Rob’s desk, where they’re serving as a powerful learning resource.

“My objective was to have a dynamic system that we could take care of, study, and use as a model for how larger systems work,” said Rob.

And for such a simple organism, the jellyfish are able to connect to loads of concepts around the life sciences. Since their arrival, Rob has led discussions around their tank environment, which lends itself well to topics like ocean currents and climate systems, and the jellyfish themselves, whose simple anatomy is easy for students to study. For example, said Rob, when the jellyfish arrived, his biology class was studying the respiratory system—how the body obtains oxygen and releases carbon dioxide—and the jellyfish provided an additional way for them to observe how other living creatures’ bodies process these gasses. They watched, amazed, as the jellies contracted their bodies to take in oxygen-rich water and then stretched to release carbon dioxide, causing a pulse that moves gases, nutrients, and waste through its tissues.

The tank’s neon lights help observers see details of the jellyfish anatomy. The mushroom-like bell is made of two tissue layers, between which are horseshoe-shaped gonads—the only part of the jellyfish that's not transparent—that produce egg cells in females and sperm cells in males. Adjacent to the gonads are the stomachs, which can be seen filled with brine shrimp larvae after a feeding. Radiating from the edges of the bell are tentacles, used to trap the food that the oral arms, which extend from the bottom of the bell, shuttle to the mouth at the bottom of the bell. A nervous system network can also be seen within the bell, which connects to poppy-seed-like eyes at the bell’s edges. “Symmetry, nerve networks, and multiple tissue layers are elements of jellyfish anatomy that provide evidence of shared common ancestry between jellyfish and other animals, including human beings,” said Rob.

In Rob’s climate science class, older students further benefit by helping to care for the jellyfish. “I wanted something that required us to monitor and maintain conditions within the system,” said Rob. “I've made sure that each class takes responsibility for it because it's way more valuable to them if they're participating.”

Students assist Rob with feeding the jellyfish brine shrimp larvae (hatched in a maze-like bowl referred to as the brine shrimp nursery) and monitoring water temperature and pH levels, which change as the jellyfish digest the shrimp larvae and produce ammonia, a toxin that builds up quickly in a two-gallon tank. “We want to make sure it's within a suitable range of pH and the metabolic products of the jellyfish,” said Rob.

Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom.—Katie Moore, class of 2021

At least once a week, students use a water-testing kit to examine ammonia levels, then condition the tank with a mixture of bacteria—one type consumes the ammonia and produces nitrite, a less toxic compound that a second bacteria then consumes, producing even a less toxic waste in the water called nitrates. Students help track these levels on a shared spreadsheet, an activity that’s helping them think about how variations in the environment can have far-reaching repercussions.

“Temperature, pH, nitrogen compounds—they fluctuate,” explained Rob. “Depending on what you add or take out, it'll push it in one direction or another. I use that as an analogy to better understand that the earth system works in similar ways. It builds the students’ ability to understand the flow of material through a system, and then how the balance of material in any one place affects how the system behaves.”

It’s clear when talking to students that these concepts are sticking. Senior Katie Moore, a climate science student, noted, “Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom. Now think about our ocean. How many days have we ignored the changes we've observed but not documented? How many days have our actions impacted the lives of ocean inhabitants with, or without, our noticing?”

It’s a significant way to think about the interconnectedness of all living organisms that share the planet, and a lovely reminder that those connections we share can bind us closer. Rob noted people only need a moment of observation before they start to feel a fondness for the jellies, and that many of his colleagues, as well as students who are no longer in his classes, like to stop by to enjoy them. “As soon as anyone comes in, I'll just sit back quietly and let them watch for a while,” he said with a smile.

Close-up of Rob Wilson's moon jellies, which he uses in his climate science and biology classes.

The jellyfish have charmed Rob Wilson’s students, who have even named them. In senior Katie Moore’s climate science class, the largest jellyfish (who, Katie said, has only three stomachs instead of the usual four) is known as Big Bertha, the medium-sized jellyfish is Gerald, and the smallest jellyfish is Bob.​​​​

It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look.—Rob Wilson

“We are very concerned about their well-being. We absolutely love them like children and love to talk about their endeavors,” added Katie, who noted that the students, after many weeks of observation, can tell the difference between the jellyfish, have named them, and worry about their survival. “We have a full-fledged conspiracy theory about how they keep dying and Mr. Wilson keeps replacing them hoping we will not notice.”

Luckily, moon jellies can live up to three years if well cared for, and Rob and students are committed to making sure that’s the case at Rowland Hall. Rob even comes in on weekends and breaks to keep them alive, and he has designated a space in his home for them to live in during summer break, as he’s planning on bringing them back to school in the fall to continue to enhance lessons—and to inspire the kind of wonder that access to living creatures offers.

“It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look,” he said. “There's so much to learn from watching the simple organism.”

STEM

A Rowland Hall middle schooler in class

In mathematics, students learn the definition of an equation: a statement that shows the values of two mathematical expressions are equal (for example, x – 5 = 10).

But math teachers, including Garrett Stern, who teaches in the Middle School, want students to understand that an equation isn’t just numbers and letters on a page. “An equation,” said Garrett, “relates to an image on the graph.”

For many of our math students, this piece of algebra art represents their pinnacle achievement in middle school math.—Garrett Stern, math teacher

These images can take a variety of forms—such as lines, parabolas, and circles—which, when placed together on a graph, can do something exciting: they can create art.

To help illustrate the visual beauty in mathematical equations, Garrett has for the past six years assigned his students the task of creating their own algebra art using the Desmos graphing calculator, a free resource used by educators around the world. Every year, he’s found that Rowland Hall students are able to produce inventive, and often very impressive, works of art.

“For many of our math students, this piece of algebra art represents their pinnacle achievement in middle school math,” said Garrett.

At an April 15 student assembly, Garrett highlighted algebra art as well as recognized the accomplishments of this year’s crop of artists. He was joined by three students, Rebecca M., Jojo P., and Erika P., who created some of the most outstanding pieces in this year’s unit. Below, these students share their algebra art experiences with the Rowland Hall community.

“Star Destroyer” by Rebecca M.

Desmos algebra art by Rowland Hall eighth grader Rebecca M.

Click image to view on Desmos.

Rebecca’s drawing of a Star Destroyer is one of this year’s most complicated pieces. In fact, the Star Wars fan’s subject was so detailed that Garrett said he initially attempted to talk her out of it.

“I tried to dissuade Rebecca from trying her idea,” he remembered, “but she rejected my advice.”

Rebecca—who was inspired to tackle the Star Destroyer after viewing an algebra art drawing of an AT-AT, or All-Terrain Armored Transport, that now-junior Dillon Fang created when he took Garrett’s class—admitted that, although she was able to complete her chosen subject in the end, the process of creating the Star Destroyer was very challenging.

“I was quite confident going into this project, but my confidence began to dwindle after doing some equations,” she said. Rebecca especially remembers the difficulty of creating the ship’s bridge. “It has many small pieces that you don’t think about until you have to trace it with algebra equations.”

Rebecca said the time-consuming three to four weeks it took to complete her project required a lot of patience and resilience—but that it was worth it because it taught her she can do difficult things.

“I am super proud of it. I would gladly do it again,” said Rebecca. “I managed to push through and made a really cool design.”

“Simplicity” by Jojo P.

Desmos algebra art by Rowland Hall eighth grader Jojo P.

Click image to view on Desmos.

Jojo loves line drawings, especially of people, and discovered that she could successfully recreate the curves of a traditional ink-and-paper line drawing in the online Desmos format—an accomplishment that caught her math teacher’s attention.

“What impresses me most about Jojo's piece is the stylish curvature,” Garrett said.

But creating her project wasn’t easy. Jojo remembers feeling far behind her classmates in the early days of the assignment.

“I didn't really know how to make the equations,” she said. “In the beginning, all I had was about five lines, when everybody else had way more done. I was scared I would be behind.” Instead of panicking, however, she persisted, figuring out the equations she needed and building on her skills as she moved from long lines and wide curves to nail and flower details, which she said were definitely the hardest part of the drawing.

“When it was finished, I felt proud,” Jojo remembered. “I felt awestruck because I didn't think I could do anything like this.” It’s clear that the experience built her confidence in a way that will continue to benefit her.

“The project was challenging, but it showed me, as a mathematician, what I actually was capable of,” Jojo said.

"Ornate Owl" by Erika P.

Desmos algebra art by Rowland Hall eighth grader Erika P.

Click image to view on Desmos.

Garrett chose to highlight Erika's piece at the assembly because she managed to include texture—although she said that hadn’t been her original plan.

“I wanted to create an owl because owls are my favorite animal, but I hadn’t planned on making it so detailed,” Erika explained.

After experimenting with equations for the owl’s body, beak, talons, and eyes, Erika said she felt like she needed to add more to her drawing and started on what turned out to be its most complicated component: feathers.

“I had to try out multiple numbers in order to get the feathers—which were created out of parabolas—to be thin and long enough to look good if I consistently spread them throughout the wings,” she said. The feathers alone took Erika over two hours to complete, and are just one example of the experimentation she had to do to create a piece that she was proud to turn in.

“The hardest part was getting shapes and lines to line up and intersect, as well as experimenting with equations to get shapes that looked at least somewhat realistic,” she remembered. “I just had to jump into it.”

Now, Erika said, she can’t imagine her drawing without those detailed additions, and she’s proud she challenged herself.

“I was glad I decided to add detail because I was thinking about submitting the work before then, but it just didn’t feel like a finished piece,” she said. “After finishing, I felt quite accomplished!"


Altogether, this year’s eighth-grade class created 75 pieces of algebra art. Below are some examples of their work (click each square to see the artwork larger on Desmos).

“Our students deservedly feel proud of their achievements,” said Garrett. “They ambitiously attempted challenging images, embraced sophisticated equations, attended to detail, and, above all, persevered.”

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

Algebra art 2021

 

STEM

Rowland Hall's robotics team.

Rowland Hall’s young women in computer science have continued their outstanding track record of earning accolades from the National Center for Women and Information Technology’s (NCWIT) Aspirations in Computing (AiC) annual awards program.

This year, six Winged Lions earned awards from our regional Northern Utah NCWIT Affiliate: senior Maddy Eatchel and junior Irenka Saffarian secured wins; sophomore Ane Hernandez and freshman Sophie Zheng earned honorable mentions; and junior Tianyi Su and freshman Claire Wang were named rising stars.

Our students’ AiC success is due in part to the efforts of computer science (CS) teacher Ben Smith ’89, himself a past winner of two educator honors at the affiliate level. Ben always encourages promising CS students to apply for the awards; this year, he’s glad that many still did, despite the challenges of the pandemic. “It’s really a testament to the school's dedication to make computer science, robotics, and technology an accessible and exciting option for all students,” the teacher said.

Senior Maddy Eatchel, an affiliate AiC winner, is now captain of our robotics team after helping to start the team last year. She wants to study CS in college, and is working on a research project applying machine learning to data in order to find new compounds for batteries.

This year’s recognized group from Rowland Hall skews younger than usual, and that bodes well for our CS program’s future, Ben said: students who receive higher levels of recognition typically apply for the awards two or more years in a row. For lone senior Maddy, a 2020 honorable mention recipient, this year’s win is a natural progression: she’s now captain of Rowland Hall’s robotics team after helping to start the team last year. She wants to study CS in college, and is currently working on a research project applying machine learning to data in order to find new compounds for batteries.

"Maddy took my intro to Java course on a whim as a sophomore, with very little interest other than the need to fill a class period," Ben said. "She has gone on to take my AP Java class, and to be an integral member of the new school robotics team, leading the team in a very challenging year."

Rowland Hall students will attend the regional affiliate’s virtual award ceremony on March 20. In addition to recognizing awardees, the ceremony will include a panel of college students and networking opportunities with women in the tech industry.

Ben started encouraging his students to enter the AiC awards back in 2014. Since then, 19 Winged Lions have earned a collective 25 awards, including one win and two honorable mentions at the national level. Under Ben’s leadership, Rowland Hall has been committed to ensuring all students—especially young women, who are underrepresented in computing careers—feel welcomed and supported in CS.

stem


Top image: The Rowland Hall robotics team at the Freedom Prep Academy FIRST Tech Challenge state qualifier in Provo, Utah, on March 13. From left to right: senior Yuchen Yang, sophomore Jordyn VanOrman, freshman Gabe Andrus, freshman Adam Saidykhan, senior captain and regional AiC winner Maddy Eatchel, senior Daniel Carlebach, and freshman Joey Lieskovan (cut off on the right edge).

You Belong at Rowland Hall