Custom Class: post-landing-hero

Teachers have many strategies to help build students’ excitement around science. If you ask Rowland Hall biology teacher Rob Wilson for one of his, he’ll say to give them access to living organisms.

“Over the years, I've become more and more focused on providing students access to the living organism,” he said. “I want my students to have a really sensory perception and experience of living things.”

Over the years, I've become more and more focused on providing students access to the living organism. I want my students to have a really sensory perception and experience of living things.—Rob Wilson, biology teacher

To do this, Rob is always on the lookout for organisms that can help simplify or solidify the concepts he teaches to upper schoolers. In a state like Utah, his students have access to a range of these resources, and Rob’s led them in conducting experiments on everything from birds to flower bulbs. But, Rob said, the state does have limitations.

“We don't have access to the ocean,” he said.

So Rob found a way to bring the ocean to Rowland Hall: in early February, he introduced three jellyfish, known as moon jellies, to his climate science and ninth-grade biology students. These small organisms—only about an inch in diameter across their upper bells—live in a two-gallon tank on Rob’s desk, where they’re serving as a powerful learning resource.

“My objective was to have a dynamic system that we could take care of, study, and use as a model for how larger systems work,” said Rob.

And for such a simple organism, the jellyfish are able to connect to loads of concepts around the life sciences. Since their arrival, Rob has led discussions around their tank environment, which lends itself well to topics like ocean currents and climate systems, and the jellyfish themselves, whose simple anatomy is easy for students to study. For example, said Rob, when the jellyfish arrived, his biology class was studying the respiratory system—how the body obtains oxygen and releases carbon dioxide—and the jellyfish provided an additional way for them to observe how other living creatures’ bodies process these gasses. They watched, amazed, as the jellies contracted their bodies to take in oxygen-rich water and then stretched to release carbon dioxide, causing a pulse that moves gases, nutrients, and waste through its tissues.

The tank’s neon lights help observers see details of the jellyfish anatomy. The mushroom-like bell is made of two tissue layers, between which are horseshoe-shaped gonads—the only part of the jellyfish that's not transparent—that produce egg cells in females and sperm cells in males. Adjacent to the gonads are the stomachs, which can be seen filled with brine shrimp larvae after a feeding. Radiating from the edges of the bell are tentacles, used to trap the food that the oral arms, which extend from the bottom of the bell, shuttle to the mouth at the bottom of the bell. A nervous system network can also be seen within the bell, which connects to poppy-seed-like eyes at the bell’s edges. “Symmetry, nerve networks, and multiple tissue layers are elements of jellyfish anatomy that provide evidence of shared common ancestry between jellyfish and other animals, including human beings,” said Rob.

In Rob’s climate science class, older students further benefit by helping to care for the jellyfish. “I wanted something that required us to monitor and maintain conditions within the system,” said Rob. “I've made sure that each class takes responsibility for it because it's way more valuable to them if they're participating.”

Students assist Rob with feeding the jellyfish brine shrimp larvae (hatched in a maze-like bowl referred to as the brine shrimp nursery) and monitoring water temperature and pH levels, which change as the jellyfish digest the shrimp larvae and produce ammonia, a toxin that builds up quickly in a two-gallon tank. “We want to make sure it's within a suitable range of pH and the metabolic products of the jellyfish,” said Rob.

Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom.—Katie Moore, class of 2021

At least once a week, students use a water-testing kit to examine ammonia levels, then condition the tank with a mixture of bacteria—one type consumes the ammonia and produces nitrite, a less toxic compound that a second bacteria then consumes, producing even a less toxic waste in the water called nitrates. Students help track these levels on a shared spreadsheet, an activity that’s helping them think about how variations in the environment can have far-reaching repercussions.

“Temperature, pH, nitrogen compounds—they fluctuate,” explained Rob. “Depending on what you add or take out, it'll push it in one direction or another. I use that as an analogy to better understand that the earth system works in similar ways. It builds the students’ ability to understand the flow of material through a system, and then how the balance of material in any one place affects how the system behaves.”

It’s clear when talking to students that these concepts are sticking. Senior Katie Moore, a climate science student, noted, “Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom. Now think about our ocean. How many days have we ignored the changes we've observed but not documented? How many days have our actions impacted the lives of ocean inhabitants with, or without, our noticing?”

It’s a significant way to think about the interconnectedness of all living organisms that share the planet, and a lovely reminder that those connections we share can bind us closer. Rob noted people only need a moment of observation before they start to feel a fondness for the jellies, and that many of his colleagues, as well as students who are no longer in his classes, like to stop by to enjoy them. “As soon as anyone comes in, I'll just sit back quietly and let them watch for a while,” he said with a smile.

Close-up of Rob Wilson's moon jellies, which he uses in his climate science and biology classes.

The jellyfish have charmed Rob Wilson’s students, who have even named them. In senior Katie Moore’s climate science class, the largest jellyfish (who, Katie said, has only three stomachs instead of the usual four) is known as Big Bertha, the medium-sized jellyfish is Gerald, and the smallest jellyfish is Bob.​​​​

It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look.—Rob Wilson

“We are very concerned about their well-being. We absolutely love them like children and love to talk about their endeavors,” added Katie, who noted that the students, after many weeks of observation, can tell the difference between the jellyfish, have named them, and worry about their survival. “We have a full-fledged conspiracy theory about how they keep dying and Mr. Wilson keeps replacing them hoping we will not notice.”

Luckily, moon jellies can live up to three years if well cared for, and Rob and students are committed to making sure that’s the case at Rowland Hall. Rob even comes in on weekends and breaks to keep them alive, and he has designated a space in his home for them to live in during summer break, as he’s planning on bringing them back to school in the fall to continue to enhance lessons—and to inspire the kind of wonder that access to living creatures offers.

“It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look,” he said. “There's so much to learn from watching the simple organism.”

STEM

The Wonder of the Simple Organism: How Biology Teacher Rob Wilson Is Using Jellyfish to Enhance the Student Experience

Teachers have many strategies to help build students’ excitement around science. If you ask Rowland Hall biology teacher Rob Wilson for one of his, he’ll say to give them access to living organisms.

“Over the years, I've become more and more focused on providing students access to the living organism,” he said. “I want my students to have a really sensory perception and experience of living things.”

Over the years, I've become more and more focused on providing students access to the living organism. I want my students to have a really sensory perception and experience of living things.—Rob Wilson, biology teacher

To do this, Rob is always on the lookout for organisms that can help simplify or solidify the concepts he teaches to upper schoolers. In a state like Utah, his students have access to a range of these resources, and Rob’s led them in conducting experiments on everything from birds to flower bulbs. But, Rob said, the state does have limitations.

“We don't have access to the ocean,” he said.

So Rob found a way to bring the ocean to Rowland Hall: in early February, he introduced three jellyfish, known as moon jellies, to his climate science and ninth-grade biology students. These small organisms—only about an inch in diameter across their upper bells—live in a two-gallon tank on Rob’s desk, where they’re serving as a powerful learning resource.

“My objective was to have a dynamic system that we could take care of, study, and use as a model for how larger systems work,” said Rob.

And for such a simple organism, the jellyfish are able to connect to loads of concepts around the life sciences. Since their arrival, Rob has led discussions around their tank environment, which lends itself well to topics like ocean currents and climate systems, and the jellyfish themselves, whose simple anatomy is easy for students to study. For example, said Rob, when the jellyfish arrived, his biology class was studying the respiratory system—how the body obtains oxygen and releases carbon dioxide—and the jellyfish provided an additional way for them to observe how other living creatures’ bodies process these gasses. They watched, amazed, as the jellies contracted their bodies to take in oxygen-rich water and then stretched to release carbon dioxide, causing a pulse that moves gases, nutrients, and waste through its tissues.

The tank’s neon lights help observers see details of the jellyfish anatomy. The mushroom-like bell is made of two tissue layers, between which are horseshoe-shaped gonads—the only part of the jellyfish that's not transparent—that produce egg cells in females and sperm cells in males. Adjacent to the gonads are the stomachs, which can be seen filled with brine shrimp larvae after a feeding. Radiating from the edges of the bell are tentacles, used to trap the food that the oral arms, which extend from the bottom of the bell, shuttle to the mouth at the bottom of the bell. A nervous system network can also be seen within the bell, which connects to poppy-seed-like eyes at the bell’s edges. “Symmetry, nerve networks, and multiple tissue layers are elements of jellyfish anatomy that provide evidence of shared common ancestry between jellyfish and other animals, including human beings,” said Rob.

In Rob’s climate science class, older students further benefit by helping to care for the jellyfish. “I wanted something that required us to monitor and maintain conditions within the system,” said Rob. “I've made sure that each class takes responsibility for it because it's way more valuable to them if they're participating.”

Students assist Rob with feeding the jellyfish brine shrimp larvae (hatched in a maze-like bowl referred to as the brine shrimp nursery) and monitoring water temperature and pH levels, which change as the jellyfish digest the shrimp larvae and produce ammonia, a toxin that builds up quickly in a two-gallon tank. “We want to make sure it's within a suitable range of pH and the metabolic products of the jellyfish,” said Rob.

Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom.—Katie Moore, class of 2021

At least once a week, students use a water-testing kit to examine ammonia levels, then condition the tank with a mixture of bacteria—one type consumes the ammonia and produces nitrite, a less toxic compound that a second bacteria then consumes, producing even a less toxic waste in the water called nitrates. Students help track these levels on a shared spreadsheet, an activity that’s helping them think about how variations in the environment can have far-reaching repercussions.

“Temperature, pH, nitrogen compounds—they fluctuate,” explained Rob. “Depending on what you add or take out, it'll push it in one direction or another. I use that as an analogy to better understand that the earth system works in similar ways. It builds the students’ ability to understand the flow of material through a system, and then how the balance of material in any one place affects how the system behaves.”

It’s clear when talking to students that these concepts are sticking. Senior Katie Moore, a climate science student, noted, “Taking care of the jellyfish has put into perspective the actual scale and impact of climate change within our oceans. It only takes us one day of missing our chemical testing or transitioning water incorrectly to affect the mini-ecosystem in our classroom. Now think about our ocean. How many days have we ignored the changes we've observed but not documented? How many days have our actions impacted the lives of ocean inhabitants with, or without, our noticing?”

It’s a significant way to think about the interconnectedness of all living organisms that share the planet, and a lovely reminder that those connections we share can bind us closer. Rob noted people only need a moment of observation before they start to feel a fondness for the jellies, and that many of his colleagues, as well as students who are no longer in his classes, like to stop by to enjoy them. “As soon as anyone comes in, I'll just sit back quietly and let them watch for a while,” he said with a smile.

Close-up of Rob Wilson's moon jellies, which he uses in his climate science and biology classes.

The jellyfish have charmed Rob Wilson’s students, who have even named them. In senior Katie Moore’s climate science class, the largest jellyfish (who, Katie said, has only three stomachs instead of the usual four) is known as Big Bertha, the medium-sized jellyfish is Gerald, and the smallest jellyfish is Bob.​​​​

It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look.—Rob Wilson

“We are very concerned about their well-being. We absolutely love them like children and love to talk about their endeavors,” added Katie, who noted that the students, after many weeks of observation, can tell the difference between the jellyfish, have named them, and worry about their survival. “We have a full-fledged conspiracy theory about how they keep dying and Mr. Wilson keeps replacing them hoping we will not notice.”

Luckily, moon jellies can live up to three years if well cared for, and Rob and students are committed to making sure that’s the case at Rowland Hall. Rob even comes in on weekends and breaks to keep them alive, and he has designated a space in his home for them to live in during summer break, as he’s planning on bringing them back to school in the fall to continue to enhance lessons—and to inspire the kind of wonder that access to living creatures offers.

“It's fun to invite that kind of close observation—to go beyond glancing at something to taking a really close look,” he said. “There's so much to learn from watching the simple organism.”

STEM

Explore Our Most Recent Stories

You Belong at Rowland Hall